Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 183(1): 304-316, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32193212

RESUMO

Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Fototropinas/metabolismo , Fototropismo/genética , Fototropismo/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia
2.
Plant Physiol ; 178(3): 1358-1369, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266749

RESUMO

Under high light intensity, chloroplasts avoid absorbing excess light by moving to anticlinal cell walls (avoidance response), but under low light intensity, chloroplasts accumulate along periclinal cell walls (accumulation response). In most plant species, these responses are induced by blue light and are mediated by the blue light photoreceptor, phototropin, which also regulates phototropism, leaf flattening, and stomatal opening. These phototropin-mediated responses could enhance photosynthesis and biomass production. Here, using various Arabidopsis (Arabidopsis thaliana) mutants deficient in chloroplast movement, we demonstrated that the accumulation response enhances leaf photosynthesis and plant biomass production. Conspicuously, phototropin2 mutant plants specifically defective in the avoidance response but not in other phototropin-mediated responses displayed a constitutive accumulation response irrespective of light intensities, enhanced leaf photosynthesis, and increased plant biomass production. Therefore, our findings provide clear experimental evidence of the importance of the chloroplast accumulation response in leaf photosynthesis and biomass production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fotossíntese/fisiologia , Fototropinas/metabolismo , Fototropismo/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Biomassa , Cloroplastos/metabolismo , Fototropinas/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia
3.
J Plant Res ; 129(2): 175-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26858202

RESUMO

The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Gnetophyta/fisiologia , Transdução de Sinal Luminoso , Fosfoproteínas/metabolismo , Fototropinas/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Gnetophyta/genética , Gnetophyta/efeitos da radiação , Luz , Mutação , Fosfoproteínas/genética , Fotossíntese/efeitos da radiação , Fototropinas/genética , Fototropismo/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...